10 research outputs found

    A 6G White Paper on Connectivity for Remote Areas

    Get PDF
    In many places all over the world rural and remote areas lack proper connectivity that has led to increasing digital divide. These areas might have low population density, low incomes, etc., making them less attractive places to invest and operate connectivity networks. 6G could be the first mobile radio generation truly aiming to close the digital divide. However, in order to do so, special requirements and challenges have to be considered since the beginning of the design process. The aim of this white paper is to discuss requirements and challenges and point out related, identified research topics that have to be solved in 6G. This white paper first provides a generic discussion, shows some facts and discusses targets set in international bodies related to rural and remote connectivity and digital divide. Then the paper digs into technical details, i.e., into a solutions space. Each technical section ends with a discussion and then highlights identified 6G challenges and research ideas as a list.Comment: A 6G white paper, 17 page

    Special applications and spectrum sharing with LSA

    No full text
    Abstract The commercial long-term evolution (LTE) networks of today offer fast and regionally wide access to the Internet and to the commercial applications and services at a reasonable price. At the same time, public safety (PS) users are still communicating with old-fashioned, second-generation voice and data services. Recently, the commercial LTE networks have been standardized to offer capabilities to mission-critical users. However, the commercial networks do not yet fully support the coverage requirements of the PS users. Moreover, the commercial infrastructure might be out of order in critical scenarios where PS actors are needed. Thus, the PS users require, for example, rapidly deployed LTE networks to support their own communication. This thesis studies the PS use of commercial operators’ LTE networks and rapidly deployed closed LTE networks. The key tasks are to find out how to connect users seamlessly together between the different networks as well as finding out how the frequency planning is implemented. This thesis provides practical design solutions to guarantee network interoperability by connecting the networks as well as radio spectrum utilization solutions by licensed shared access (LSA). While the concept of LSA has been well developed, it has not been thoroughly investigated from the point of view of the PS actors, who have special requirements and should benefit from the concept. Herein, the alternatives for spectrum sharing between PS and commercial systems are discussed. Moreover, the thesis develops a specific LSA spectrum sharing system for the PS actors deploying their own network in scenarios where the commercial networks are insufficient. The solution is a robust LSA-based spectrum sharing mechanism. Note that PS actors also need to be able to utilize the spectrum when the LSA system is not available and when the commercial system has failed. Thus, this thesis proceeds on developing sensing methods for complementing LSA, where the sensing methods guarantee spectrum information for a rapidly deployed PS network. It is shown how PS actors can utilize available spectrum with a secondary spectrum licence. This is a good alternative to reserving the spectrum completely. The work assembles missing pieces of existing methods to ensure the functionality of the commercial and of the supporting rapidly deployed networks, both in terms of spectrum usage and application services.Tiivistelmä Kaupalliset long-term evolution (LTE) -verkot tarjoavat nopean, edullisen ja alueellisesti kattavan pääsyn Internettiin sekä laajaan valikoimaan sovelluksia. Samaan aikaan turvallisuustoimijat (public safety (PS) -toimijat) käyttävät vanhanaikaisia äänen sekä vaatimattoman datayhteyden tarjoavia verkkoja. LTE-verkot ovat kuitenkin äskettäin standardoitu tarjoamaan valmiudet myös toimintokriittiseen kommunikointiin. Toisaalta, kaupalliset LTE-verkot eivät vielä tarjoa esimerkiksi tarvittavaa alueellista kattavuutta PS-käyttäjille. Lisäksi, kaupalliset verkot saattavat olla epäkunnossa kriittisissä tilanteissa. Tämän vuoksi PS-toimijat tarvitsevat omia nopeasti pystytettäviä LTE-verkkoja tukemaan nykyaikaista viestintäänsä. Opinnäytetyössä tutkitaan näiden nopeasti pystytettävien LTE-verkkojen käyttöä kaupallisten LTE-verkkojen kanssa. Keskeiset tehtävät ovat eri verkkojen PS-toimijoiden saumaton yhdistäminen sekä verkkojen taajuusjaon toteuttaminen. Tämä opinnäytetyö tarjoaa käytännön ratkaisuja verkkojen yhteentoimivuuden takaamiseksi ja radiotaajuuksien jakoratkaisuja lisensoidun jaetun käyttöoikeuden licensed shared access (LSA) -metodin avulla. Vaikka LSA:n käsite on jo pitkälle kehitetty, sitä ei ole tutkittu perusteellisesti PS-toimijoiden näkökulmasta ottaen huomioon heidän erityisvaatimuksensa. Tässä työssä syvennytään näiltä osin LSA järjestelmään yhtenä vaihtoehtona taajuuksien saamiseksi nopeasti pystytettäville verkoille. Lisäksi työssä kehitetään robusti LSA-pohjainen taajuuksien jakamisjärjestelmä nopeasti pystytettäville verkoille tilanteissa, joissa kaupalliset verkot ovat riittämättömät. Huomaa, että PS-toimijoiden on pystyttävä hyödyntämään taajuuksia myös silloin, kun LSA-järjestelmän kaikki osat eivät ole käytettävissä ja kun kaupallinen LTE järjestelmä on alhaalla. Tätä varten opinnäytetyössä kehitetään LSA:ta täydentävä havainnointimenetelmä, jolla taataan taajuustiedot vapaista taajuuksista nopeasti pystytettäville verkoille, sekä näytetään, miten PS-toimijat voivat hyödyntää LSA:ta toissijaisen taajuuslisenssin avulla. Tämä on hyvä vaihtoehto radiospektrin varaamiseksi kokonaan. Työ kokoaa puuttuvia osia olemassa oleviin menetelmiin, jotta voidaan varmistaa kaupallisten verkkojen toimivuus PS-käyttäjille yhdessä niitä tukevien nopeasti pystytettävien verkkojen kanssa taajuuksien käytön ja sovelluspalvelujen osalta

    Licensed Shared Access System Possibilities for Public Safety

    No full text
    We investigate the licensed shared access (LSA) concept based spectrum sharing ideas between public safety (PS) and commercial radio systems. While the concept of LSA has been well developed, it has not been thoroughly investigated from the public safety (PS) users’ point of view, who have special requirements and also should benefit from the concept. Herein, we discuss the alternatives for spectrum sharing between PS and commercial systems. In particular, we proceed to develop robust solutions for LSA use cases where connections to the LSA system may fail. We simulate the proposed system with different failure models. The results show that the method offers reliable LSA spectrum sharing in various conditions assuming that the system parameters are set properly. The paper gives guidelines to set these parameters

    Unmanned Agricultural Tractors in Private Mobile Networks

    No full text
    The need for high-quality communications networks is urgent in data-based farming. A particular challenge is how to achieve reliable, cost-efficient, secure, and broadband last-mile data transfer to enable agricultural machine control. The trialed ad hoc private communications networks built and interconnected with different alternative wireless technologies, including 4G, 5G, satellite and tactical networks, provide interesting practical solutions for connectivity. A remotely controlled tractor is exemplified as a use case of machine control in the demonstrated private communication network. This paper describes the results of a comparative technology analysis and a field trial in a realistic environment. The study includes the practical implementation of video monitoring and the optimization of the control channel for remote-controlled unmanned agricultural tractors. The findings from this study verify and consolidate the requirements for network technologies and for cybersecurity enablers. They highlight insights into the suitability of different wireless technologies for smart farming and tractor scenarios and identify potential paths for future research

    Field trial with tactical bubbles for mission critical communications

    No full text
    Abstract Main research and development interest of 5G and beyond systems are focusing on solution for populated and hot spot areas, but public safety authorities need reliable communication solutions in rural and remote areas. Tactical bubbles—ad hoc-type nonpublic communications networks built with the 3rd Generation Partnership Project-based mobile technologies—offer mission critical communications services for public safety authorities in areas with bad mobile network coverage while also providing additional capacity in hot spot areas. In this experimental study, three interconnected bubbles acting on three different frequency bands—2.3 GHz (40), 2.6 GHz (7), and 3.5 GHz (n78)—are trialed. This article provides the analysis of different factors related to performance and user experience of tactical bubbles. Both ground-level and aerial trial measurements, as well as simulations, were utilized to verify our configuration for the tactical bubbles and their fulfillment of the quality requirements. The performance and coverage of the tactical bubbles are evaluated in a trial, which represents authorities’ search operations in a rural environment with hills, forests, and swamps. The achieved coverage range of the bubbles is more than 1000 m with the unmanned aerial system-based measurements, whereas by car, the coverage is less than 600 m. The effect of obstacles (ie, buildings and hills) on the coverage area and performance of bubbles is significant, especially on car-based measurements on the ground level

    The first end-to-end live trial of CBRS with carrier aggregation using 3.5 GHz LTE equipment

    No full text
    Abstract This paper presents the first end-to-end field trial of the U.S. three-tier Citizens Broadband Radio Service (CBRS) with carrier aggregation using commercial 3.5 GHz network elements in a live LTE-A test network. The trial features an assignment of a shared spectrum to an operational LTE base station and demonstrates how it boosts the end user mobile data rate due to extended bandwidth availability. The field trial is important as it shows that a spectrum access system can be implemented utilizing existing network systems and latest technologies. The field trial allows studying the operation of a real system and comparing the performance to the relevant FCC requirements and particularly those related to different response times between the LTE-A network and CBRS

    Unmanned agricultural tractors in private mobile networks

    No full text
    Abstract The need for high-quality communications networks is urgent in data-based farming. A particular challenge is how to achieve reliable, cost-efficient, secure, and broadband last-mile data transfer to enable agricultural machine control. The trialed ad hoc private communications networks built and interconnected with different alternative wireless technologies, including 4G, 5G, satellite and tactical networks, provide interesting practical solutions for connectivity. A remotely controlled tractor is exemplified as a use case of machine control in the demonstrated private communication network. This paper describes the results of a comparative technology analysis and a field trial in a realistic environment. The study includes the practical implementation of video monitoring and the optimization of the control channel for remote-controlled unmanned agricultural tractors. The findings from this study verify and consolidate the requirements for network technologies and for cybersecurity enablers. They highlight insights into the suitability of different wireless technologies for smart farming and tractor scenarios and identify potential paths for future research

    Critical communications over mobile operators’ networks:5G use cases enabled by licensed spectrum sharing, network slicing and QoS control

    No full text
    Abstract Commercial mobile operators’ networks will be used for public safety communications due to demand for wireless broadband services, new applications, and smart devices. Existing dedicated professional mobile radio networks, such as terrestrial trunked radio, Tetrapol, and project 25, are based on narrowband technologies and hence their data bandwidth is limited. This paper studies how critical communications needed, e.g., by ambulance personnel, rescue squads, and law enforcement agencies can be implemented over a 5G network. The most important technology enablers are described and test network architectures used in our project given. We focus on two different use cases. First, how to enable priority communications over a commercial mobile network. Second, how to create rapidly deployable networks for emergency and tactical operations. Tests done with the implemented systems in real networks show that both approaches are very promising for future critical users. Techniques such as network slicing and licensed shared access provide means to support mission critical applications in any environment
    corecore